Greenspan acoustic viscometer: Numerical calculations of fields
and duct-end effects
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Inertial and resistive end corrections for the Greenspan acoustic viscometer were computed using a
boundary-integral-equation technique for determination of the acoustic field. Viscous effects were
estimated using a boundary-layer approximation. The results apply to a circular duct coupling two
concentric chambers and to ducts terminated by infinite plane baffles. The effects of rounding the
sharp edge at the duct end were investigated and found to be described by simple scaling relations.
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INTRODUCTION corners, and to evaluate the effects of chamfering on the

inertial and resistive end corrections. Experimental

. Thg Greenspan apousﬂc viscomelfeig. 1) consists of a determination5of the inertial and resistive end effects are in
cylindrical duct coupling two chambers whose volumes ar

: o €ood agreement with the calculations reported here.
large compared with the volume .Of the duc_t. Giléisal.* ° Theg paper is organized as follows. T?]e next section is a
have shown tha_t the Greenspa_n wscomgter IS an accurate afa/iew of the acoustic model of the Greenspan viscometer,
convenient device _for measurng _the V'SCOS.'ty of 9ases. Ayjith emphasis on defining the parameters which need to be
full thgory of the viscometer requires mpdelmg the 'nert'alevaluated numerically. Some supporting material is in Ap-
and viscous effects of the converggnt/dwergent .ﬂOW ‘?‘t th_ endix A. Duct-end effects are discussed in Sec Il. Section
duct ends. These effects are mvesugateq numerically in thi | is a summary of the numerical approach, with further
paper. The present resu!ts are required if the uncertgmty etail in Appendix B. The remainder of the paper is a pre-
viscosity measurements is to be reduced from approxmatelgentation and discussion of the numerical results.
1% to the order of 0.1%.
_ The theqry of_the Greenspan v_iscometer is base_d on thFGREENSPAN VISCOMETERS
linear equations introduced by Kirchhoff to describe the
coupled temperature, pressure, and velocity fields in gases. Martin Greenspan suggested the use of a double-
In particular, the exact solutions of Kirchhoff are used toHelmholtz resonator for measuring the viscosity of gases in
calculate the flow impedance of the viscometer duct. Fod953" Recent experimental work demonstrated that such
infinitely long ducts and the range of parameters in typicafesonators, now called Greenspan viscometers, are capable
applications, the calculations of the duct impedance can bef measuring the viscosity of gases with an uncertainty less
regarded as exact. End corrections are, however, importa#ftan 1%. Figure 1 shows the viscometer shape and defines
for the ducts of convenient experimental designs. some dimensions used throughout this paper. A cylindrical
In this work the acoustic field and eigenvalud are  coordinate system concentric with the duct and chambers,
calculated for model shapes in the approximation of rigidWith the origin at the center of the resonator, will also be
boundaries and negligible dissipation. From these solutiongissumed, unless noted otherwise.
it is possible to determine the inertial end correction without ~ The Greenspan viscometer has a low frequency mode in
further approximation, and to determine the first-order coefwhich the gas in the duct oscillates between the two cham-
ficient of viscous end effects. bers. For this mode, the contours in Fig. 2 show that the
A boundary-integral-equatiofBIE) formalism was used acoustic velocity within the duct is nearly constant. A zero-
in the calculations. For axisymmetric shapes like theorder approximation to thécirculan oscillation frequency
Greenspan viscometer, the boundary value problem for thean be obtained by assuming that gas in the duct has a con-
acoustic field can be expressed as a one-dimensional integfent velocity, and that the main effect of the chambers is a
equation whose solution yields both the eigenva&lead the ~ pure compliance. This leads to
e_igenfunction, or velocity potentiafp. This integral equa- - 202A,
tion has been solved for Greenspan viscometers with a wide wéz VAL
variety of dimensions. Analysis of the numerical results d¥e
yielded values of the inertial and resistive end correctionswherec is the speed of sound, is the cross-sectional area
Among the advantages of the BIE technique is the exaotf the ductL 4 is the length of the duct, and; is the volume
representation of surfaces generated by rotating curves aff a single chamber. For practical viscometers, the product of
arbitrary shape. Thus it has been possible to alter the resontiie corresponding propagation parametgr wqo/c and a
tor cross-section by replacing sharp corners with chamferetypical resonator dimension is small compared with unity.

@
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of the ends. The viscous and inertial effects of the evanescent

waves, and the viscous and inertial effects of localized fields
T in the chambers near the orifices, are included in the orifice

impedance. An approximate theory of the end effects is de-
veloped in the next section.

2r)) 2rq l
Il. DUCT-END EFFECTS

kb Ly—o The acoustic fields near acoustic orifices in thin plates
_ _ ~and at the ends of ducts have been widely investigated.
FIG. 1. Cross-section of Greenspan viscometer. The shaded portions afhe inertial effects are commonly expressed in terms of a
metal; the gas under test fills the open areas of the resonator. The transdyc- . . . .
ers and fill duct are omitted. umped impedancewpd, /Ay. Here p is the gas density,
iwpl/Aq is the inertance per unit length for nondissipative

coustic flow in a duct, and, is the inertial end correction.

Practical acoustic viscometers must be described by aﬁa leial® aives the exact value. — a1 /4 for an orifice in
acoustic model which includes viscous and thermal dissipa- yielgh giv exact value, = 4/ mee 1
n infinitesimally thin plate, and obtained an approximate

tion. The model is defined most succinctly by an equivalemf"l . S
circuit of acoustic elements.The duct element is a value §,~0.82 4 for a duct end with an infinite plane baffle.

T-equivalent circuit which represents the Kirchhoff The latter estimate was improved by Danfelind recently

: recalculated by Norris and Sheffy, who obtained
equations. The duct ends and the chambers are represente 92159 ,. Rayleigh's expression for the exact flow veloc-

by series combinations of orifice impedan@ggsand cham- "~ P . o
ber impedanced, . Each of these lumped-circuit compo- ity in the infinitesimally thin orificeu, 1/\/1—r2/rdZ has a
gularity of orders™ %2 at the orifice edge, whergis the

nents is defined as the ratio of an acoustic pressure differencd!

divided by a volume velocity. The chamber impedances Cal;iilstance from the edge. The tangential velocity on the plate

be modeled with accurate analytic approximations which in1aS @ similar singularity”> The weallléer singular behavior
nel, ~'*, was built into the

clude the effects of the thermal boundary layers at the chanf?¢af the corner of an baffled e

ber walls. The acoustic velocity field in the chambers is neg;[rlal solutions used by Daniell. Unbaffled duct ends were

ligibly small except for the region within a few duct radii of investigated by Levine and Schwingetn the limit of an

- it infinitesimally thin duct wall, the velocity near the end of the
the_ dur_:t end._ T_he inertial and dissipative effe_cts of the Ve uct has a gingularity of ordes 12 ar)1/d the inertial end
locity field within the chamber are thus localized and are o . ' .
most conveniently included in the orifice impedance. correct|on_|s_apprOX|mater 0.6} As the thickness of the

The Kirchhoff equations provide an essentially exact de-ijCt_WaII IS mcreas_ed f“"_“ very small to large values_, 'Fhe
scription of the coupled pressure, temperature, and vorticity ertlgl end correc_tlo.n.vanes uniformly EEtWQe” the limits
fields in ducts of infinite length. At the Helmholtz resonance or thin ducts and infinitely baffled ductS:

of the viscometer, the flow in the duct is nearly uniform with V|sgo|ufT forces aszomatec(ij with ghe d|vergen;:ez dm . thel
a pressure node at=0. This point is also a node for the tangential flow near a duct end are the sources of additiona

acoustic temperature. The full theory shows that temperatur(éontr'b!Jtlons .to the or.|f|ce |mpgdance, which can be esti-
ated(in the linear regimgusing ideas that were apparently

oscillations in the duct are so weak that dissipation in thd"

. . e . '16 . _
duct is almost entirely due to viscous effecfBhe full model first applied to or|f|ces_ _by Nielseff. _The flow IS repre
accounts for the small thermal losses in the chambers. sented by a superposition of acoustic and vorticity waves

Near the ends of the duct the Kirchhoff equations fail towhich together satisfy a nonslip boundary condition on solid

represent the field accurately. The full solution in the duclboundar[es. s vort!cny waves are c.onflned tq a layer near
the solid boundaries of approximate thickness,

could in principle be represented as the sum of the contribu-’ Balp. wh is the Vi . hen the Vi
tions from a single propagating mode and an infinite numbef~ Y27/ p@, Where is the viscosity. When the viscous pen-

of evanescent modes. The latter decay within a few duct radfftration lengthd, is small compared with other dimensions,
and the surface curvature is large compared with the

transverse flow velocity near a boundary is approximately
Ur(§) = [1—e” D], )

where ¢ is the distance from the duct wall, ang ; is the
transverse acoustic velocity near the wall. The corresponding
force per unit area of boundary surface is

(9Ut n

(‘7_§ §:0_ 51)

Nielsen estimated the orifice resistance by integrating the
FIG. 2. The acoustic field near a duct end, for radial coordinat® and Corresponding rate of dissipation per unit armgvu;t_

axial coordinatez along the axis of symmetry of the viscometer. The dark . P e . . .
rectangle represents a half-cross-section of the end of a duct wall betwee_qu his appllcatlon to an orifice in a thin plate, the dlvergent

radii r4 andr ;. The field is shown as contours of uniformly spaced velocity mt_e_gral had to be cut off at distance of Or(_ﬁf from th?
potential(or pressurg as calculated in this work. orifice edge. For duct ends, the weaker divergence in the

(1+i)ua,t:%pw5v(1+i)ua,t' (€)

r
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tangential flow velocity leads to a convergent integral, simi-lll. NUMERICAL APPROACH

lar to the treatment of step-discontinuities in an infinite plane . L .
duct by Morse and Ingartf In the limit of small dissipation, the acoustic pressure

Panton and Mille? correlated the work of Thurstgrt,  Within the resonator is proportional to the velocity potential

Ingard?® Thurstonet al,” and Ingard and Isidd on the im- ¥, @ solution of the boundary value problem
pedance of orifices in thin plates. They found that the orifice  (v24+k2)d(r)=0, reC,

inertance was constant below a mean orifice flow velocity of )
about 0.35,w, and that the orifice resistance was constant g . res
below a mean orifice flow velocity of about& . These an =

results support the existence of a low-velocity linear regime, he Helmhol ion in th @rsubi
where the Greenspan viscometer is intended to operate. THhE- the Helmholtz equation in the resonarsubject to a

nonlinearity thresholds for thin plates and baffled duct endé\leumann boundary condition on the resonator surgaokn

may differ considerably, however, because the singular be@quwalent form of the same boundary value problem is the

havior of the tangential velocity in the limit of zero viscosity integral equation
is different for the two cases.
The combined inertial and viscous contributions to the ~ ®(r")Q(r")=— Ld)(r)n-VG(r’,r)dS, (10)
orifice impedance can be conveniently expressed
wherer andr’ are both onS, Q(r’) is the internal solid

_pw . . angle subtended b8atr’, and the fundamental solution, or
Zend="p 1o+ (14 1) 3R], 4 Green's function, is
ikR
where the two components associated with the viscous G(r',fn= R=|r—r'| (11)
1 R b -

boundary layer are represented by a the orifice resistance
parameterdg . This parameter can be determined by calcu-gq|ytions of this integral equation yield both the eigenfre-
lating the additional dissipation near the duct éhd. quencyw=ck and the velocity potentiab on the surface of
~ The total, time-averaged, rate of energy loss due 10 thgyg resonator. The numerical procedure described below en-
viscous boundary layer in an axisymmetric resonator is  gpjes the determination of smooth approximate values of the
tangential velocityu, ;=®’ on the resonator boundary, as
pP= ZPWSUJ u2 rds, (5)  required for accurate calculations 6f.

2 ' The cross-sectional area of a Greenspan viscometer,
which is both axisymmetric and has mirror symmetry with
respect to the=0, plane can be represented by parametric
equationg (t) andz(t), both symmetric irt, with the mid-
plane att=0. The velocity potential on the surface can be
written as a function of the parameterin Appendix B it is
shown thatb(t) is the solution of a one-dimensional integral
equation

where ds is the element of arc length in the longitudinal
cross-section of the viscometer. A portiBg of this loss will

be included in the Kirchhoff equations representing the duct
The acoustic velocity in the duct, in the limit of smaJ)/r g,
iS U,= U, coskz, wherek=w/c, so that

- Lg/2
0 —Q(t’)q)(t’):f gn(t", P (h(H)r (t)dt, (12)

The total power loss whereds, the element of arc length in the cross-section, is

P=Py+ X pwdg/Ag)U? @) egual to_h(t)dt, a,ndgn(t 1), is a kernel with a logarithmic
singularity att=t".

exceedsP, because of the localized additional losses near AN approximate solution of the integral equatitte)

the duct end. Her& = Agu,, coskLy/2) is the volume flow can be formulated as a series of Hermite cubic polynomials,

out of the duct. Equatiori7) can be used to determing each defined on a portion of the boundary. The solutions of

once the total power loss has been determined numericallynterest have odd symmet(t) = —d(—t). It suffices to
The inertial lengths, can be obtained most conveniently define the geometry for=0 and to use this symmetry in

and with high accuracy by using the resonance condition formulating a solution. It is convenient to divide the resona-
tor cross-section, or generator, fae0, into N elements,

ktan(kLy/2) +k28,— Ag/V, =0, (8) with the jth element corresponding fo- 1<t<j. The ele-
ments could be chosen to have arbitrary shapes. However,

derived from the equivalent-circuit model of the viscométer, shapes with sharp and rounded corners can be represented
together with numerically determined values of the reso-with only two types of elements: straight lines and circular
nance parametée. An alternative procedure, described later, arcs. The resonator shape is treated exactly within these con-
is more directly related to the definition of inertance, but isstraints.
less convenient because it requires calculation of the flow in ~ The velocity potentiatb(t) is approximated as a series
the orifice at the duct end. The two methods yield equivalenbf cubic Hermite polynomials so that, by construction, both
results. ®(t) and the tangential derivativ@’=d®d/ds are continu-
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ous at the nodes dividing the elemeri{fBhe latter condition the supplementary condition used instead of continuit 6f
cannot be applied at reentrant corners, as explained belowat corner nodes with interior angler.
The coefficients in the polynomial representation are the For a 3w reentrant corner at nodg the eigenfunction
eigenfunction®; and its tangential derivativd)j’ at nodes will have a limiting behavior of the form, witls— s, the arc
j=0,1,...,N. There are thus 2{+ 1) unknown coefficients length from the corner an@ a constant,
in the representation of the eigenfunction and its derivatives. ®=d, +Cls—s,|23 (16)
By requiring that the approximate solution satisfy the inte- le™ o
gral equation(12) at each of the node$y+1 linear equa- which has a singular tangential derivative. An improved ap-
tions are obtained. Additional linear equations can be Obproximation tod(t) was obtained by using, on the elements
tained by requiring that the second derivativds’ be  adjacent toiw reentrant corners, suitably defined basis func-
continuous at most of the internal nodes. This condition mustions with this limiting behavior. Because the continuity con-
be modified at corners, as described below. Two additionadiition on ®’ cannot be imposed at a reentrant corner, an
conditions are®(0)=0 (at the plane of mirror symmetyy alternative linear equation was required. This was obtained
and®’ =0 for nodes on the axi@nless there is a cusp in the by use of Eq(15) through ordeﬂs—sc|2 to relate values of
chamber cross-sectipnwith appropriate conditions at each ®; for j=1. andl =1 and values ofbj’ for j=1.+1. (The
internal node, a total o+ 1 additional linear equations is approximations toP on the singular elements adjacent to
obtained. The solution to this set has the form corner nodes do not involve the paramem'g, which was

N left undefined for singular elemenits.

CDJ-/:E Dj|q)|. (13)

1=0 B. Shapes investigated
The tangential derivatives can now be eliminated from the
N+1 equations which approximate E(L2); this set can
now be expressed

Numerical calculations were carried out for many varia-
tions of the geometry shown in Fig. 1. Five series of calcu-
lations were carried out for viscometers with the duct ends
N flush with the chamber wallsL{=0). For each series the
E Ajj(k)@;=0, (14)  duct radius was varied from 0.02 to 0.5r.. The series
=0 differ in the ratio of the lengths., L., andL4. For series C
where the matrix element; (k) are obtained by numerical these lengths were in the ratio 1:2:2. The effects of halving
integration over the elements of appropriate products of th@nd doubling the duct length were checked with series B
basis functions and the kernel of the integral equation, anél:2:1) and D (1:2:4). The effects of halving and doubling
subsequent elimination the/ terms through Eq(13). the chamber lengths were checked with seriedA:2) and
Approximate values of the eigenvalkare obtained by E (1:4:2. The duct—.end effects were found to depend most
requiring the determinant of matri;; (k) to vanish. Oncé  Strongly on the ratiory/r. and only weakly on the other

is determined®; can be determined from E¢L4), and®] dimensions. The effects of rounding the orifice edges were
by solving Eq.(14) by inverse iteratiof’ with series A.

For the viscometers with; # 0, as used in recent experi-
ments, the duct extends into the chambers a distap¢the
insertion length The dependence of the orifice parameters
on this length was investigated for a shape typical of the

Near corners the eigenfunctions will have a two- Shapes used in recent experimezrﬂ'she effects of duct-wall
dimensional character whose limiting behavior is restrictedhickness were also calculated.
by the boundary conditions. Considettamporary cylindri-
cal coordinate system with polar coordinatesp(¢). As-  C. Grid generation
sume that thel axis corresponds to a corner and that the Uniform spacing of the nodes does not yield optimum

boundaries are a=0 and¢., i.e., §. is the interior angle 555 ximations of the eigenfunctions. Instead, the node spac-
at the corner. Solutions of the Helmholtz equation expandegingshj were scaled to provide greater detail in regions where
about the corner have the form the eigenfunction was varying most rapidly, i.e., near reen-
trant corners. The numerical code was constructed so that a
d=2 [a codwd)+b sin(u1 )13, (kp). (15 maximum node spaciniy,,, Was used for surfaces whege
! is weakly varying. The spacing was uniformly graded down
The Neumann boundary conditiofp/d¢dp=0 at$p=0 and to a minimum node spacind,,, at reentrant corners, as
¢= ¢, requires that alb,=0 and thatu,¢. be a multiple  shown in Fig. 3. The figure shows two singular elements of
of 7. Accordingly, the lowest nonzero Bessel-function indexlengthh,,;, at the sharp corner, with neighboring normal el-
is uy=m/¢.. For azm internal corner this ist;=2; fora ements of the same length, next-nearest neighboring ele-
37 reentrant corner it isu;=3. The leading term in the ments graded up one step, etc. Various grading scales were
expansion of the Bessel function ikg)#1. Accordingly, at tested. Typically the ratio of the lengths of adjacent elements
i internal corners the eigenfunctiah will have a vanish- was chosen to be between 1.05 and 1.1. The maximum and
ing tangential derivative as the corner is approached. This iminimum node spacings were typically,,..=r./40 and

A. Corners
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0.1

QI
FIG. 3. Node positions near sharp and chamfered corners.

hmin=r /4000 orr/400. The number of elemenk$ varied
from 216 to 404, depending on the series anchgp,. The 0.01
results reported in this paper have been calculated with many
grid configurations and do not depend significantly on the
details of the grids used.
The effects of chamfering reentrant corners was investi-
gated by replacing the singular elements and adjacent Distance from orifice edge (unit = rq)

straight elements by circular-arc elements; the node SPacingds 5. The tangential derivativé’ at nodes in the ducftriangles and

on the circular-arc elements was alwdys,, with h; graded  chamberopen circlesnear the orifice, as functions of the distance from the
upward in the straight elements adjacent to the circular-arorifice edge in units of the duct radiug, showing the expected divergent
elements. behavior. Viscometer dimensions arg=L.=L4/2, ry=r./10.

0.001 0.01 0.1 1

IV. NUMERICAL RESULTS flow pattern is t_ypical; Withir_1 the chamber the acoustic ve-
locity drops rapidly over a distance of ordey.
Figure 4 shows the cross-section of a viscometer and the
numerically computed values df; and|<I>J-’|. As expected, A. Eigenvalues and inertial end corrections
the eigenfunction is nearly constant within the chamber, and

has a nearly linear dependence within the duct. The behavior For egch shape mvesnggted, th_e elg(_anvdxlueas cal-
T - . , culated with at least two grid configurations. The results

near the duct orifice is more visible in the plot b’|, typically agreed to within a few parts in 10A convenient

which clearly shows the singular behavior. The singular be—yp yag P

) o 4 20 method of summarizing the results is to use the numerical
havior near the orifice edge is shown more clearly in Fig. 5.

: ; . . | fk and the viscometer dimensions, together with th
(The use of nonsingular basis functions in the elements ad.2ue otk & d the viscometer dimensions, togethe ©

. . . equivalent-circuit model in the limit of no dissipation, and to
jacent to the reentrant corner yielded numerical value® of S :
, . . ! calculate the inertial end correctiof). Somewhat greater
and®; nearly identical to those plotted heye. consistency of the results can be obtained by the separation
Equation(10), with Q(r’) =44 at internal points’, can Y y P

. . . =06/ +6
be used to calculate internal values of the velocity potentlaf)‘ 1= 5" » Where m9st of the effects of chamber length are
included in the terms; .

from the boundg_ry values. Figure 2 .Sho.WS some typical re- In Appendix A it is shown that a cylindrical chamber
sults near an orifice of a duct extending into a chamber. The . C e . )
With a concentric circular orifice in which the normal fluid

velocity isu,(r) has an input impedance equal to the sum of

B C
2
, _pC kL.
" jwV tankL, (17
D.——E
1 " and
4ikpc < Andy(Zonl g/t
o \ Zi,;: rP E nJ1(Zonl g ;) F (k). (18)
0 1 | | T n=1 [Z5ndo(Zon)]
A B C D E . .
1- Here z,, is thenth root of dJy(z)/dz=0. The other quanti-
10-1- ties are
1072 fao
|®| 10-3} An=f0 U,(r)Jo(zZonr/re)rdr, (19
e~ N - - .
105 N B whereu,(r) is u,(r) divided by its value averaged over the
10-8 L ' ' ' orifice, and
A B C D E
length cot (zopLo /1 ¢) V1— (Kre/zZgn)?
arc leng Fn(k)= f'[( onk-c c) ( 20 On) ]wl. (20)
FIG. 4. Top: Outline of viscometer cross-section, with=r =L4/2 and Vl_(krc/ZOn)

rq=r¢/10. Center and bottom: plots df; and|®;| at 321 nodes along the The first contribution, Eq(17), is the zero-dissipation input
viscometer boundary, as a function of arc length along the boundary from ’ ’ . . ..
reference point A to reference point E. The computed eigenvalue for thidmpedance of the chamber modified for its finite length

case isk=0.002 451 507y . through the factor
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FIG. 7. Inertial end correction as a function of insertion length for a
viscometer withL .=r.=L4/2, rq/r.=0.05, andr j/r.=0.075.

.2 1 1 1 1 . . . . .
0 0.0 0.1 0.2 0.3 04 05 result is obtained by using an approximation to the actual

rafre flow

FIG. 6. Inertial end corrections, calculated from numerical eigenvalue
k.The solid line was calculated for a model flow field in the orifice. The
dotted line is Ingard’s result for uniform flow in the orifice.

U,=A+BX+CX 18 (26)

with X=1—(r/ry)2. The coefficients in this expression were
obtained by calculating internal values &f for a series A

KLc/tan(kLc)=1—3(kLo)*+O(KLc)*. (21)  viscometer withr 4/r .= 0.05. The resultgsimilar to those in
Equation(17) is thus approximately Fig. 2 were numerically differentiated to obtain, in the
plane of the orifice. Equatiof26) was fit to the results to
, pc® iwpl, (22 obtain the coefficient®\=0.249+0.002, B=0.032+0.002,

and C=0.490+0.001. With these coefficients, thf, were

_ computed using Eqg19) and(26), and §//r4=0.7666 was

The second term has the frequency/phase signature of gptained by summing Ed24), in excellent agreement with

inertial term; the corresponding contribution &pis the value 0.7665 obtained from the numerical eigenvalue and
8 =4(rqlro)Le. (23  the model. Under the assumption that ER6) with these

coefficients is a reasonable approximatioruidor the other

values ofry, Eq. (24) was then used to calculag/r 4 as a

i~ oV 377-['5 ’

Similarly, the larger contribution t@, from Eq. (18) is

* function ofr 4/r.. The results, shown as the solid line in Fig.
f AnJl(ZOnrd/rc) d ¢ . . .
6, =4ry 2 T o n(k). (29 6, show that this approximation gives an excellent account of
=1 [Zondo(Zon)] the orifice inertance.
The inertial end correction§ were calculated for each The inertial end correction has also been calculated for

resonator geometry using the numerical valuek aind a  viscometers with a finite insertion length>0. Unfortu-
modified form of Eq.(8), in which V., was replaced by nately the insertion of the duct end distorts the resonator
V. tan(kL.)/(kL), so that the effects of finite chamber size shape so that the contributidii can no longer be calculated
expressed in Eq17) are accounted for. Average results for in a simple way. Instead, the full inertial end correction must
the five series of viscometers are shown in Fig. 6. The resultge calculated for each resonator geometry, using the numeri-
for the individual series differ from the average by a maxi-cal eigenvalues and an equivalent circuit with the input im-
mum of 0.001 at 4/r.=0.5, and by a much smaller amount pedances of the chambers equapt¥/iwV,. Results as a
in range of typical applicationsy/r .<0.1. Thus separation function ofL;/L. are shown in Fig. 7 for a typical viscom-
of the 8" term accounts for nearly all dependence on viscometer. The inertial end correction decreases initiallyadn-
eter dimensions other than the ratig/r .. A linear fitto the ~ creases from zero, reaches a minimum, and then increases
data in the rangey/r.<0.1 yielded again as the interaction with the back wall of the chamber
, increases. When the duct end is near the center of the reso-
91/rq=0.82159-1.10204/r. (25 nator it most closely approximates an unbaffled end, with
The correctness of this result is supported by the agreemenjaximum distance to the chamber walls. The minimum
to five decimal places, of the constant term with the recenvalue exceeds the value of Levine and Schwiider an
calculation of Norris and Sherfd. unbaffled duct of zero thickness because the finite thickness
The decrease with increasing duct radius is due to thef the duct acts as a partial baffle. The dependence on duct
change in coupling to the chamber modes in Ep4). thickness is shown in Fig. 8. For each value of the fractional
Ingard® used a similar expression with a pistétonstant  duct thicknessi(y—r4)/r4, the end correctiod, was found
approximation tau, in the orifice, for which to be a linear function of4/r ., and consistent with the trend
A= 231(Zont 4 IT ) (ZonF g IT ) in Fig. 6 The data were ex_trapolate.d to zero duct thickness
N AYLSOnTd T e /T SonTd T el to obtain the top curve in Fig. 8, which appears to smoothly
The dotted line in Fig. 6 was calculated using this expresapproach the Levine—Schwinger value of 0.61 for zero frac-
sion. It clearly overestimates the end correction. A bettetional duct thickness.
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FIG. 8. Inertial end correction as a function of fractional duct thickness 08¢ *

(rg—rg)frq, forry/r. equal to 0.1, 0.075,*, 0.05, X, and extrapolated

to zero,+. The single solid circle® represents the result of Levine and 0.0 0.'1 0:2 0_'3 014 0.5
Schwinger in the limit of zero duct thickness. The other resonator dimen- TafTe

sions werel.=2r., Ly=5r./2, andL;=r /2.

FIG. 10. Orifice resistance parameter as a function of duct radius, for five
Greenspan viscometers with=0; Series AX; B, ®; C,O; D, +; E, ¢.

B. Acoustic flow in the duct
orifice but above the digital noise farther into the duct. This

_The resonance frequencies of Greenspan viscometers akgeement provides further support for the correctness of the
typically much lower than the cutoff frequencies for higher , merical calculations.

modes of a duct. Accordingly, near the center of the duct, the

eigenvector is expected to be well approximated by a mule  oyifice resistance

tiple of sinkz, and the tangential derivative by a multiple of . . )

coskz Insight into the divergent flow near the orifice can be ~ For each set of numerical calculations, the rafjg’s,
gained by looking at the difference betwedr in the duct ~Was calculated using Eqg5)—(7). The integral forP was
and the best approximatioA coskz This differenceAd’ calculated from the gub|c represgntatlombf on each ele-
=@’ —Acoskzis plotted in Fig. 9. The constat was de- Ment and the numerically determined valuesigfand ®; .
termined by a fit tod' for z<L /4. The figure shows that The results are shown in Fig. 10 for the five series of reso-

the difference is smooth over five orders of magnitude. Th@ators with duct ends flush with the chamber wall. For small

divergent behavior of the tangential derivative near the ori-duct radii, the orifice resistance parameter approaches 0.909

fice is evident. The complete solution in the duct can be1”0.001 for all series. The contribution from outside the duct

expressed as the sum of the propagating mode and an infiniiié)pro""cﬂeS 83?3 and the contribution from inside the duct
number of evanescent modes, the latter approximately proqppr_l?r?c es_f_ T " ; lculated
portional to exp{z),Az/ry), whereAz is the distance from € onilice resistance parameter was caiculated as a

the orifice edge. The line in Fig. 9, which is proportional to funcuoq Of. insertion length fqr one case. The results are
shown in Fig. 11. As the duct insertion increases from zero,

hen=1 evan nt wave, is clearl roximati o . o . .
the evanesce .t ave, Is clearly a good approximat Or1he orifice resistance begins increasing rapidly, reaches a pla-
o the plotted data in an intermediate range away from th(;f\eau and then rises further as the duct end nears the back

wall of the chamber. The initial increase is a trend toward an
unbaffled duct end. When the duct is flush with the chamber

107 wall the local field approximates that near an infinite baffle,
where there is a single integrable singularity in the square of
1072} the tangential velocity. When the duct extends into the cham-
ber there is a second singularity of the same order at the
0| outer corner of the duct end. The numerical coefficient of the
outer singularity increases as the duct wall thickness de-
Ad! creases. When the duct gets very thin, the combination of
107 singularities approximates the stronger singularity of an in-
0| 10 . . : —
L o
6 F r 0000000000""00 i
10 & -3‘9 ]
Az/rd P i
FIG. 9. DifferenceA®’ = d' — A coskzbetween the tangential derivative of 0.9 1
the velocity potential in the duct antl coskz, plotted as a function of the ) 1 1 L
distanceAz from the orifice edge, for a viscometer with=r.=L4/2 and 0.0 0.2 04 0.6 0.8
rq/r.=0.1. The constanh was determined by a fit t&' well within the L;/L,

duct. The differences near the orifice can be expressed in terms of an infinite
sum of evanescent waves. The decay constant for the most-slowly decayifgG. 11. Orifice resistance parameter as a function of insertion ldngth
evanescent wave is shown as a solid line. for a viscometer with..=r.=L4/2, r4/r.=0.05, andry/r.=0.075.
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ends with rounded edges to minimize the maximum tangen-
tial velocity, a possible source of nonlinear effects.
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FIG. 12. Orifice resistance parameter as a function of relative duct thicknessPPENDIX A

(rg—rg)/ryq, for a resonator with..=2r., L4=5r./2, andL;=r./2. Cal-

culations were made fary/r equal to 0.1, 0.075, and 0.05. The depen- An expression for the acoustic input impedance of a

dence ofég /8, onrg/r. was negligible. circular orifice in one end of a cylindrical chamber is derived
in this section. The cylinder has rigid walls atr., z=0,

finitesimally thin duct, so that the orifice resistance increasegndz=L.. The orifice is az=0, r<ry. The normal com-

with decreasing duct thickness, as shown in Fig. 12. ponent of the acoustic velocity in the plane of the orifice is
U,(r). The acoustic pressure in the chamber can be ex-

pressed using Green’'s theorem
D. Rounded corners
r

The effects of rounding sharp reentrant corners on the p(r’)sziwpf duz(r)G(r,r’)rdr. (A1)
inertial and resistive end corrections have been investigated. 0
The sharp orifice edge was replaced by a quarter-circular arghe Green’s function is
of radiusry. Orifice inertance and resistance parameters
were calculated as a function ofy for a large variety of Gr=3 Dy(r,z)Py(r',z")
cond|t|(_)ns. The resistive end corrections were found to scale ' w2l o[ Jo(Zon) 1A(K2 — k)
according to

(A2)

where ¢, =2— §|¢ is the Neumann symbol, the eigenfunc-

SR(T cn) = Sr(0)[ 1= 3(1 cnt/ T 0) V1. (27 tions are
The inertial end correction was only weakly dependent on ¢ — 3, (zy.r/r.)cog| wz/L,), (A3)
chamfering, as expressed by the scaling law

the eigenvalues are

8,(Fepd) = 6,(0)[1—30.3r s/ o) 7). 28
1(Fen) = 61(0)[ Areni/ro)*] (28) K2,=(Lonlt )2+ (17ILe)2, (A4)

The occurrence of the chamber radius in the latter suggests

that the effect is associated with the slope in Fig. 6 rathePm(¢) is @ Bessel function, andy, the nth root of Jo(¢)

than the intercept. =—J,(£)=0. The specific acoustic input impedance of the
The decreases of bothiz and &, by rounding of the orifice is the ratio of the mean pressure in the orifipg to

sharp corners is qualitatively consistent with the trend obhe volume velocit(u,)Aq. The mean pressure can be ob-

served in Thurston’s measurements of the effects of sevef@ined by averaging

beveling and rounding on the impedance of orifices in thin 20 wp(u )r2 A
plates:® A more quantitative test was made during the de-  p(r,z)= P\ d I”*n
velopment of the Greenspan viscométdihe ends of a duct rile o [Jo(Zon)1?
were chamfered slightly, so that/r4~0.07. The corre-
sponding decrease iy predicted by Eq(27) is 14%, which % Jo(Zonr/T¢) (A5)
was confirmed experimentally within about 4%. The pre- (Zonlro)?+(lar/Ly) — K2
dicted and observed changesdnwere less than 1%.

where

r

V. CONCLUDING REMARKS A= fodﬁz(r’)Jo(zmr’/rc)rdr (A6)

The boundary-integral-equation formalism described
here has been shown to be a useful technique for calculaﬂr@ﬁdu is u,/(u,). Note thatA,= 3, so that then=0 sum can
the acoustic field within Greenspan viscometers, includingoe split off. The input impedance of the chamber is
the singular effects near reentrant corners. The resulting
acoustic solutions were used together with a boundary-layer - _ P 'w_p d CS( KLc/)
approximation for the vorticity mode to determine the iner- "opcu)  Ag Py 2
tial and resistive components of the lumped acoustic imped-

ances associated with the duct ends. Limiting cases of the L lep iwp 4irgle — Andi(Zonla/ro) ).
results were shown to agree with known results for baffled Ad w?r. 0=1 Lon[do(Lom 12
and unbaffled duct ends. The reduction of the acoustic resis- (A7)

tance at duct ends was found to follow a power law. In future
applications, the results can be applied to the design of duathere
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* € with suitably defined;; andC;; determined by integrations
S(a)=2, Y = (7l a)coth amr), of the kernel over the elements. Continuity®f at all non-
=0 1°+ reentrant internal nodes requires
an={Lonk (7T c) 7, 6(P;_1—D))/h7+2(P]_;+2P])/h;
2n=N1—(kre/Lon)?~1. =—6(D;— D, 1)/h7 ;=220 + D], /N1 (BE)
The input impedance is the sum of two terms equivalent tAAn alternative condition for reentrant corners was obtained
Egs.(17) and (18). by using the values o¥"” from the series expansion 8f on

the singular elements, and matching these to values on the
adjacent nodes. As explained in the main text, these equa-
tions were supplemented by conditions on the first and last
elements to permit a solution in the form of E43), which

Consider the integral equatiofl0) for axisymmetric ~Wwas then used to eliminate the derivatives from &§p) to
problems with source pointgt)=(r,z,¢) and field points obtain Eq.(14).

APPENDIX B

r(t')=(r',z’,0). The distanc®=|r(t)—r(t")]| is The matrix elements were calculated using the Quad-
pack adaptive numerical quadrature routirela .?® Special
R(t',t,¢)=\r?+r'?=2rr’ cosp+(z—2')>. (BL)  care was taken with the weakly singular integrals which oc-
The area element i8S=r d ¢ h dt, where curred when the range of integration included the collocation
pointtj’ . The singularities were of the logarithmic form, and
h(t)=ds/dt=y(dr/dt)?+ (dzZ/dt)®. were handled using identities similar to
For solutions independent @f, Eq. (10) can be integrated 1 1
over ¢ to obtain Eq.(12), where the kernel is fo f(t)logtdt=—f(0)+ fo [f()=f(0)]logtdt.
gt H=n(t)- JZWVRi<ekaR)>d¢. (B2  This procedure separated out the singular contribution and
’ 0 dR R permitted the use of a non-singular quadrature routine for the

remaining integration. The error limits for the adaptive
quadrature were set as low as feasible for IEEE double pre-
cision computations. No effort was made to optimize the
speed of calculation by relaxing the error limits. Sufficient
checks were made to insure that the accuracy of the quadra-
ture did not influence the accuracy of the results.

The basis set for approximate solutions of EtR) can
be defined as follows. The parameteis scaled so that the
jth element corresponded fo- 1<t<j. The local coordi-
nate on elemeni is 7;=t—j+ 1. The functionsH} (7;) are
defined to vanish for; <O and7;>1, and to equaH ( ;)
on element, where
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